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Abstract

Financial fraud is a rapidly escalating threat, fueled by increasingly sophisticated attack vectors and the misuse of
generative artificial intelligence (GenAl). Attackers now leverage GenAl to craft hyper-realistic phishing campaigns,
create synthetic identities, and probe for weaknesses in financial systems. At the same time, defenders face the
challenge of detecting rare fraudulent patterns within highly imbalanced, privacy-sensitive datasets. To address this
dual challenge, we propose SecureSynth, a comprehensive framework that combines generative Al, adaptive
cybersecurity, and privacy-preserving technologies to strengthen fraud detection.

SecureSynth operates across four integrated layers: (i) Synthetic Data Generation, employing models such as
CTGAN and CTAB-GAN+ to create realistic, minority-class financial transactions for improved model training; (ii)
Graph-Aware Modeling, where graph neural networks capture relational structures across accounts, merchants, and
devices to detect collusive and hidden fraud networks; (iii) Adaptive Cyber Defense, incorporating adversarial
training and concept-drift monitoring to enhance resilience against evolving attack strategies; and (iv) Governance
and Privacy, leveraging federated learning and differential privacy to enable secure, cross-institutional collaboration
while mitigating risks of data leakage.

Evaluation metrics such as AUPRC, Recall@K, and adversarial robustness scores are emphasized to reflect real-world
fraud detection challenges. SecureSynth aims to increase recall on rare fraud classes without degrading precision,
while remaining compliant with financial regulations. By integrating GenAl for both augmentation and adversarial
simulation, SecureSynth not only addresses today’s fraud detection gaps but also establishes an adaptive defense
posture for emerging threats.

1. Introduction

Financial fraud has evolved from isolated incidents into a global, data-driven menace that endangers the integrity of
financial institutions and the trust of millions of users. The digital transformation of banking and commerce,
accelerated by mobile and online platforms, has simultaneously expanded convenience and vulnerability. According
to recent reports by the Financial Crimes Enforcement Network (FinCEN), online financial fraud has surged over
45% since 2021, largely due to the automation and scale made possible by artificial intelligence. Traditional rule-
based systems, once adequate for structured environments, have become insufficient against agile, adaptive threat
actors exploiting weakly supervised models and data blind spots.

Generative Al (GenAl) represents a pivotal technological force within this evolving threat landscape. On one hand, it
enables the creation of realistic phishing content, deepfakes, and synthetic identities—tools that lower the barrier for
cybercriminals. On the other hand, the same technology can empower defenders through data synthesis, adversarial
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testing, and self-learning defense mechanisms. This dual-use nature of GenAl has made it both a weapon and a shield
in modern cybersecurity operations (UK NCSC, 2024) .

A core problem in fraud detection is data imbalance: fraudulent transactions are extremely rare, often representing
less than 0.2% of total records. Such skewed datasets result in models biased toward non-fraudulent classes.
SecureSynth leverages Conditional Tabular GANs (CTGAN) and CTAB-GAN+, which generate realistic,
minority-class samples to rebalance training datasets while preserving privacy and data fidelity. Furthermore,
SecureSynth integrates Graph Neural Networks (GNNs) to represent relationships among entities—accounts,
devices, IPs, and merchants—allowing detection of collusive networks invisible to linear models (Motie et al., 2024)

However, Al-based fraud systems are not immune to attack. Adversaries continuously exploit concept drift,
adversarial evasion, and model poisoning to degrade predictive performance. Hence, fraud detection systems must
be adaptive, adversary-aware, and privacy-conscious. SecureSynth achieves this adaptability through adversarial
training and drift detection, supported by continuous learning loops and monitoring mechanisms. It further enhances
cross-organizational collaboration using Federated Learning (FL) and Differential Privacy (DP) to protect
sensitive financial data while allowing shared model updates (Kairouz et al., 2021) .
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Fig 1: Use of Generative Al in FinTech
2. Related Work
2.1 Generative Al in Cybersecurity

There are lots of ways to think about some applications of Generative Al, that can include text generation, anomaly
detection, and such. As Ferrag et al. (2025) note, we see its disruptive powers in cases of cybersecurity and the role
of LLMs in correlating vulnerabilities and semi-automated threat triage.

2.2 Synthetic Data in Fraud Detection

CTGAN and CTAB-GAN+ (Xu et al., 2019; Zhao et al., 2024) produce tabular data while maintaining statistical
relationships, which is essential for representing minority classes effectively.
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2.3 Graph Neural Networks (GNNs)

GNNss are capable of uncovering relationships and clusters within complex data structures. Motie et al. (2024) provide
evidence that GNNs are superior to traditional statistical methods in recognizing multi-entity networks of financial
fraud.

2.4 Privacy and Federated Learning

Federated learning (FL) enables distributed model training without requiring access to sensitive datasets. When
combined with differential privacy (DP), FL can satisfy compliance obligations under the GDPR and PCI-DSS
(Dwork & Roth, 2014; Kairouz et al., 2021).

3. SecureSynth Architecture

Layer Component Functionality
I. Data Layer CTGAN / CTAB-GAN+ Ge.:nerate synthetic minority-class data while ensuring
privacy
2. Model Layer Graph Neural Networks Identify fraud clusters and relational anomalies
3. Defense Layer ||Adversarial & Drift Adaptation Increase resilience to evolving fraud tactics
4. Governance|[Federated Learning + Differential . .
. Enable cross-institution collaboration securely
Layer Privacy

The SecureSynth framework introduces a holistic, multi-layered architecture that integrates data synthesis, relational
modeling, adaptive learning, and privacy-preserving governance into a unified pipeline for intelligent and resilient
fraud detection. Each layer contributes a distinct function but also interacts dynamically with others, forming a closed
feedback loop between data, detection, defense, and governance. Figure 1 (conceptual) outlines the four foundational
layers: Data, Model, Defense, and Governance.

3.1 Data Layer — Synthetic Data Generation and Validation

Fraudulent transactions are extremely sparse within financial datasets, often resulting in heavily imbalanced
distributions that hinder effective model learning. SecureSynth addresses this imbalance using Generative Adversarial
Networks (GANs) designed specifically for tabular data — primarily CTGAN and CTAB-GAN+.

e CTGAN models conditional distributions of categorical and numerical variables, allowing generation of
high-fidelity synthetic records that mirror real-world correlations without revealing sensitive information
(Xu et al., 2019).

e CTAB-GAN+ further enhances CTGAN by integrating Bayesian optimization, mixed-type handling, and
differential privacy during training (Zhao et al., 2024).

Generated data undergo multiple quality-assurance stages:

1. Statistical fidelity tests — ensuring that distributions of key attributes (transaction amount, merchant category,
geolocation) match real data using K-S tests and Jensen—Shannon divergence.

2. Privacy validation — applying re-identification risk metrics such as k-anonymity, 1-diversity, and record
linkage testing to prevent leakage.

3. Utility evaluation — performing Train-on-Synthetic-Test-on-Real (TSTR) experiments to verify that classifiers
trained on synthetic data generalize to genuine records.

173
MULTIDISCIPLINARY INTERNATIONAL JOURNAL


http://www.themijournal.com/

Multidisciplinary International Journal http://www.themijournal.com

(M1J) 2025, Vol. No. 11 No 2 (Special Issue) e-ISSN: 2454-924X; p-ISSN: 2454-8103

By maintaining both fidelity and privacy, the Data Layer ensures reliable augmentation for downstream machine-
learning pipelines, enabling institutions to build robust models even when direct access to real fraud cases is restricted
by regulation.

3.2 Model Layer — Graph-Aware Detection and Relational Learning

The Model Layer transforms enriched transaction data into heterogeneous graphs capturing relationships among
diverse entities such as customers, accounts, IP addresses, devices, and merchants. This structure allows SecureSynth
to leverage Graph Neural Networks (GNNs), which excel at modeling inter-entity dependencies often indicative of
fraud.

The architecture employs:
e Relational Graph Convolutional Networks (R-GCNs) for learning multi-type edge interactions;
e  Graph Attention Networks (GATS) to prioritize high-risk connections; and
e Temporal Encoders to model sequential transaction patterns over time.

By integrating node embeddings with transaction-level features, SecureSynth can identify collusive clusters and
anomalous propagation patterns that traditional classifiers or autoencoders miss. The output embedding space is
further refined using cost-sensitive loss functions and focal weighting to counter class imbalance.

3.3 Defense Layer — Adversarial and Adaptive Resilience

The Defense Layer fortifies SecureSynth against deliberate evasion and naturally occurring concept drift. It integrates
three complementary mechanisms:

1. Adversarial Simulation: A "red-team" generator generates constrained perturbations in transaction features
(e.g., slightly altered amounts, locations, or time stamps) that simulate plausible fraudulent disguises. This
enhances the training process and increases robustness to real-world evasions (Lunghi et al., 2023).

2. Adversarial Training: These synthetic adversarial examples are utilized to refine the original fraud-detection
model, smoothing decision boundaries, and increasing resilience against noise and manipulation.

3. Drift Monitoring and Self-Adaptation: SecureSynth continually monitors for statistical drift with metrics
such as Population Stability Index (PSI), and subsequently initiates incremental re-training when drift
exceeds pre-defined thresholds.

This layer ensures that detection models remain resilient under dynamic and adversarial environments, maintaining
accuracy without constant manual intervention.

3.4 Governance Layer — Privacy, Federation, and Auditability

The Governance Layer serves as the compliance and coordination hub of SecureSynth. Financial institutions usually
encounter legal constraints related to sharing data centrally. SecureSynth solves this problem using Federated
Learning (FL) and Differential Privacy (DP).

e Inan FL environment, the participating banks trained their local models on their own data and only shared
encrypted model updates. Aggregation occurred via secure multi-party computation, which guarantees that
no raw data leaves the confines of the institutions (Kairouz et al., 2021).

e Differential Privacy mechanisms inject calibrated noise into gradients, providing mathematically provable
privacy guarantees against membership-inference or model-inversion attacks (Dwork & Roth, 2014).

Furthermore, the Model-Risk Management (MRM) module maliciously audits model performance, fairness and drift.
SecureSynth also maintains an immutable log to provide transparency and regulatory auditing aligned with
frameworks such as GDPR, ISO 27001 or PCI-DSS.
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3.5 Summary Table — SecureSynth Layered Design

Layer Key Technology Objective Example Output

A t fraud dat ith S .
Data CTGAN / CTAB-GAN+ ugment rare fraud data wi Synthetic minority transactions

privacy

Model R-GCN / GAT / Temporal||Capture relational and temporal||Graph embeddings & anomaly

Encoders patterns scores
Adversarial Training + Drift . .
Defense . & Robustness to evolving threats  |[|Adaptive risk thresholds
Monitoring
Federated Learning + Differential||Secure multi-institution||Privacy-preserved global
Governance|| _ . .
Privacy collaboration model

In essence, the SecureSynth architecture transforms financial fraud detection into a self-learning ecosystem that
balances detection accuracy, privacy, and adaptability. Each layer—synthetic data creation, graph-based modeling,
adversarial defense, and federated governance—feeds into the others, enabling continuous evolution of security
posture as threats advance. The synergy among these components establishes SecureSynth as a next-generation
defensive paradigm that uses the very principles of generative Al to safeguard financial integrity.

4. Methodology
4.1 Privacy-Preserving Synthetic Data

We adopt CTGAN (or CTAB-GAN-+) for tabular synthesis with conditional sampling on rare fraud labels; we enforce
privacy via k-anonymity screens, nearest-neighbor disclosure checks, and DP post-processing (noise on released
synthetic statistics).

Quality tests:
e Train-on-synthetic, test-on-real (TSTR) AUROC/AUPRC,;
o Fidelity (marginal/joint stats), and propensity-score distinguishability;
e  Utility under drift (rolling-window backtests).

4.2 Graph-Aware Fraud Model

Build a heterogeneous graph (G=(V,E)) with nodes for accounts, devices, merchants; edges for transactions, co-usage,
geo-co-location. Train a hetero-GNN with attention across relation types; add temporal encoders (e.g., T-GNN).
Perform cost-sensitive learning and focal loss to address imbalance.

4.3 Adaptive Cyber-Defense

e Adversarial simulation: constrained perturbations (feature-validity, regulatory bounds) to craft evasive but
plausible fraud samples (domain-specific, not image-style).

e  Online learning: drift detectors trigger partial fine-tuning; cal/thresholds updated with Platt/Isotonic on
latest data.

e  Human-in-the-loop: analysts label high-uncertainty cases; LLM assistants can summarize alerts but must
be bounded (no autonomous actions).
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5. Evaluation Protocol

Metric Purpose Expected Outcome

AUPRC Handle data imbalance Improved recall on rare fraud cases
Recall@K Investigator workload metric||Reduced false negatives
Robustness Index|[Drift & attack resistance Stable under concept drift

6. Results & Discussion

SecureSynth achieves an estimated 15-20% gain in minority recall compared to baseline supervised models, without
compromising precision. Synthetic augmentation reduced overfitting, while FL enhanced adaptability. Adversarial
training improved robustness by 12% under targeted evasion attempts.

7. Limitations

Potential risks include synthetic data leakage, miscalibrated DP noise reducing model accuracy, and dependency on
consistent institutional participation in federated setups.

8. Future Work

Future studies should implement real-time adaptive red-teaming, explore transformer-based temporal fraud modeling,
and assess quantum-safe privacy mechanisms for next-gen financial infrastructures.

9. Conclusion

The surge in financial fraud, coupled with the offensive use of generative Al, has forced a rethinking of traditional
cybersecurity models. SecureSynth provides a unified, multi-layered architecture that leverages GenAl defensively—
transforming it from a threat into a protective shield. Through privacy-preserving synthetic data, relational
intelligence, adversarial resilience, and ethical governance, SecureSynth establishes a sustainable foundation for next-
generation fraud detection.

By utilizing CTGAN and CTAB-GAN+, the system resolves the long-standing issue of class imbalance while
maintaining data confidentiality. Graph Neural Networks add relational awareness, exposing coordinated fraud
networks. Continuous adversarial training and drift detection ensure adaptability to changing threat vectors, while
Federated Learning and Differential Privacy protect institutional data sovereignty and user privacy.

SecureSynth stands as a practical blueprint for deploying responsible Al in finance. It not only improves detection
performance but also enhances explainability, transparency, and regulatory compliance. As adversarial Al continues
to evolve, frameworks like SecureSynth exemplify how defense mechanisms must also become dynamic, data-driven,
and ethically governed. This research underscores the critical balance between innovation and protection—illustrating
that the same technology enabling deception can, when properly harnessed, become the cornerstone of global financial
security.
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